Phase Detector

CD-552R3 CD-552R4

CD-552R series detectors are an on-board phase detectors possessing frequencies falling within the range of 1 kHz to 200 kHz for CD-552R3 and frequencies falling within the range of 10 kHz to 2 MHz for CD-552R4.
The signal system is composed of the phase sensitive detector (PSD), low-pass filter (LPF), and output amplifier. A low-pass expansion of output low-pass filter cut-off frequency is available with the addition of one external resistor, and the gain setting ($\times 1$ to $\times 10$) is also enabled. The reference signal system consists of a $0^{\circ}-90^{\circ}$ phase shifter (PAT.P) and 50%-duty circuit (PAT.P), which enables the detection of $A \sin \phi$ or $A \cos \phi$ phase. The phase detection with double frequency is permitted if $2 f$ mode is placed through the connection with the specified pin.
CD-552R series detectors are in a static-shielded 20-pin single inline package.

- Absolute maximum ratings

Supply voltage (\pm Vs)	$\pm 18 \mathrm{~V}$	
Signal input voltage	\pm Vs	
Reference signal input voltage	$+5.5 \mathrm{~V},-0.5 \mathrm{~V}$	
Logic control voltage	+5.5V, -0.5 V	
$\boldsymbol{\nabla}$ Signal system ∇ Signal input		
Model	CD-552R3	CD-552R4
Input impedance	$\text { Max. 10k } \Omega \pm 5 \%$ $\text { at } 1 \mathrm{kHz}$	$\begin{aligned} & \text { Max. } 2.5 \mathrm{k} \Omega \pm 5 \% \\ & \text { at } 10 \mathrm{kHz} \end{aligned}$
Linear maximum input voltage	Min. $\pm 10 \mathrm{~V}$	
Allowable slew rate	Max. 5V/ $\mu \mathrm{s}$	Max. 130V/ $/$ s
∇ Phase detector		
Detection method	Synchronous rectifying type by square-wave multiplication	
Detection characteristics	Vout=Vin • A • $\cos \phi$ Vout: Detection DC output Vin: Input signal (synchronization) A: Gain ϕ : Phase difference between the signal system and reference signal system	

Operating frequency range	1 kHz to 200 kHz	10kHz to 2 MHz
Gain ($\phi=0$)	$1 \mathrm{Vdc} / \mathrm{V}_{0} \mathrm{p}($ sine-wave): Pins (12) and (13) open $10 \mathrm{Vdc} / \mathrm{Vo}$-p(sine-wave): Short in Pins (12) and (13) Selectable in the 1 to $10-\mathrm{Vdc} / \mathrm{Vo}-\mathrm{p}$ with the external resistor (Pins (12) and (13)	
Gain accuracy	$\pm 3 \%$	
Phase difference (signal system and reference signal system)	$\begin{aligned} & -0.05^{\circ} \text { (typ) at } 1 \mathrm{kHz}, \\ & -8^{\circ} \text { (typ) at } 200 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & -0.5^{\circ} \text { (typ) at } 10 \mathrm{kHz}, \\ & +13^{\circ} \text { (typ) at } 2 \mathrm{MHz} \end{aligned}$
∇ Low-pass filter		
Order	1-pole (6dB/oct)	
Cut-off frequency	Pins (9)-(10) shorted, Low-pass expansion is enabled with an external resistor or capacitor.	Pins (9)-(10) shorted, Low-pass expansion is enabled with an external resistor or capacitor.
∇ Detection output		
Output impedance	Max. $50 \Omega \pm 10 \%$ at 1 kHz	Max. $50 \Omega \pm 10 \%$ at 10 kHz
Linear maximum input voltage	$\pm 10 \mathrm{~V}$ (DC, Load resistance $\geq 2 \mathrm{k} \Omega$)	
Linear maximum input current	$\pm 5 \mathrm{~mA}$ (DC)	
Offset voltage	$\begin{aligned} & \pm 15 \mathrm{mV}, \pm 5 \mathrm{mV} \text { (typ) } \\ & \text { Short in input, Gain: } 1 \mathrm{Vdc} / \mathrm{Vo}-\mathrm{p} \end{aligned}$	
Offset voltage adjustment	Zero adjustment available with external pre-set resistors. (Pin (14))	

VReference signal system
∇ Reference signal input

Note: The following specifications are applied unless otherwise specified: $23 \pm 5^{\circ} \mathrm{C}$, Supply voltage: $\pm 15 \mathrm{~V}$

Block diagram

	CD-552R3	CD-552R4
Rin	10 k	2.5 k
CBint	10000 p	1000 p

SIN/COS This is used to switch the internal phase shifter between 0° and 90°, which enables the switching of detector input/output between $A \sin \phi$ and $A \cos \phi$.
[A: Amplitude (o-p) of input signal, ϕ : Phase difference between input signal and reference signal]
HI: A.cos ϕ
$\left(0^{\circ}\right)$ (specified when the pin is open)
LO: A•sin ϕ
(90ㅇ)

REF POL This is used to switch the reference polarity of reference signals. An edge specified is a reference phase. With the REF POL terminal connected to the REF IN terminal, the phase detection with double frequency is enabled if 50% of duty is assigned to the reference signal.

HI :Rising edge regarded as a reference
(specified when the pin is open)
LO: Falling edge regarded as a reference
Connected with REF IN terminal :
Both rising and falling edge regarded as a reference
OFFSET This is used to adjust output DC offset. $\pm 15 \mathrm{~V}$ is available for input, which allows both terminals of the pre-set resistor to be connected with $\pm 15 \mathrm{~V}$ input. The sliding terminal is connected to the OFFSET terminal. The signal is transmitted to the REF IN terminal with the SIG IN terminal connected to the ground, which brings the pre-set resistor into action to make offset adjustment.

Basic connection diagram

Gain setting

CD-552R3/4 detectors are outfitted with the variable-gain output amplifiers ($\times 1$ to $\times 10$). The maximum output voltage is set at $10 \mathrm{Vo}-\mathrm{p}$ that should not be surpassed when setting proper gain for post processor.

$$
\begin{aligned}
& \operatorname{Rg}=\frac{2.9873 \times 10^{4}}{\mathrm{~A}-1}-3.3 \times 10^{3}[\Omega] \\
& \mathrm{A}: \text { Gain }[\text { times }(\times)]
\end{aligned}
$$

Example: Set points

Gain	$\times 1$	$\times 2$	$\times 5$	$\times 10$
Resistance	∞	$26.7 \mathrm{k} \Omega$	$4.12 \mathrm{k} \Omega$	0

CD-552R4

c: Cut-off frequency
Cf : External capacitor
Example: Set points

Cut-off frequency (Equivalent noise bandwidth)	10 Hz $(15.7 \mathrm{~Hz})$	100 Hz $(157 \mathrm{~Hz})$	1 kHz $(1.57 \mathrm{~Hz})$	10 kHz $(15.7 \mathrm{kHz})$
Resistance	$140 \mathrm{k} \Omega$	$1.58 \mathrm{M} \Omega$	$143 \mathrm{k} \Omega$	0
Capacitance	$0.1 \mu \mathrm{~F}$	-	-	-

R should remain at $2 \mathrm{M} \Omega$ or less with the use of the eternal capacitor (Cf). Theory holds that a larger value can be assigned, but potential deterioration in offset, DC drift and noise may be concerned if assigned.

Characteristics CD-552R3

Gain fluctuations
Reference: 10 kHz , Gain: $\times 10$

Offset voltage fluctuations
Reference: 10kHz, Gain: $\times 10$

90° phase shift fluctuations

Phase offset

Characteristics CD-552R4

Gain fluctuations
Reference: 10 kHz , Gain: $\times 10$

Offset voltage fluctuations
Reference: 10kHz, Gain: $\times 10$

$\underline{90^{\circ}}$ phase shift fluctuations

Phase offset

Characteristics CD-552R3

Gain accuracy -
Temperature

Offset voltage -
Temperature

90° phase shift accuracy -
Temperature

Phase offset -
Temperature

Characteristics CD-552R4

Gain accuracy -

Temperature

Offset voltage Temperature

90° phase shift accuracy Temperature

Phase offset -
Temperature

Pattern design

Proper connection between the case ground and the GND potential should always be assured. No sufficient shielding effect is produced if disregarded.
No signal traces should be assigned on the maximum visible outline of the component mounting surface. Possible contact between the metal case and the board is observed around the maximum visible outline, which triggers the establishment of a short circuit between the signal and case. A ground plane pattern is recommended to incorporate into the maximum visible outline and the inside of the case to enhance shielding effect.

Pattern dimensions

To assure dynamic range and stability

Signal pre-processing

If a sufficient S / N ratio fails to be obtained by the optimization of detector input level or setting of the output amplifier, a filter needs to be inserted in front of the detector to enhance the S / N ratio of input signal.
The filter falls into the four types (low-pass, high-pass, band pass, and band elimination) and becomes a determinant of the following items: asynchronous signal frequency component, amplitude characteristics, filter characteristics, and cut-off frequency.
The band pass filter attenuates all signals other than synchronization signal, which maximizes the improvement of the S / N ratio. Relatively large variations in phase around the center frequency, which may lead to detection accuracy if a phase change is made in response to temperature drift. Phase drift is minimized if low-order (1-pole if possible) Q is assigned.
The low-/high-pass filters attenuate low-/high-pass signals, and offer the smaller improvement of the S / N ratio as compared with the band pass filter. A phase change at a pass band is curbed, which contributes to a smaller detection accuracy attributed to fluctuations in cut-off frequency.
The band elimination provides large attenuation to signals of specified frequencies. An efficient improvement of the S/N ratio is obtained if specified frequency is assigned to the asynchronous signal. The least phase change at a pass band is assured, which minimizes a detection accuracy attributed to fluctuations in cut-off frequency.

-Input signal level

CD-552R3/4 detectors features 10Vo-p of the maximum input level. A dynamic range can be assured if a large level of synchronization signal is input by maintaining within $10 \mathrm{~V} o-$ p. The actual input signal contains both asynchronous and synchronization signals, which requires a decrease in the amplitude of 10Vo-p or less.
E.g.: $0.1 \mathrm{~V}_{0}-\mathrm{p}$ synchronization signal is present in $1 \mathrm{~V}_{0}-\mathrm{p}$ signal that is a total of asynchronous and synchronization signals. CD552R3/4 detectors performs the detection of the signals at 1 Vdc of output despite the $\times 10$-post-stage DC amplifier being designated. The allowable input level enables a $\times 10$-amplifier to be inserted in front of the CD-552R3/4 detectors to input the maximum input voltage of 10 V 0 -p. The detection output obtains 10 Vdc when the $\times 10$-post-stage DC amplifier is designated, which allows the obtainment of the maximum output signal.

■Output amplifier

The output amplifier is capitalized on to obtain a proper output level if a small detection output remains despite the optimization of input signals. CD-552R3/4 detectors are outtitted with the vari-able-gain output amplifiers ($\times 1$ to $\times 10$). The maximum output voltage is set at $10 \mathrm{~V}_{0}$-p that should not be surpassed when setting gain to assure proper voltage for post processor.
Note that an increase in DC drift, offset voltage and output noise is considered with an increase in gain.

Phase adjustment

Phase detection with the use of the CD-552R3/4 detectors may require phase adjustment for the optimization of detection sensibility and cancellation of processing phase.
Phase adjustment is conducted in combination with the voltage controlled phase detector CD-951V4. Continuous change in phase shift of the reference signal is enabled through DC voltage.

Evaluation board

A module-mounted evaluation board is available for easy evaluation of this module. Contact us for further information.

Phase Shifter

- Absolute maximum ratings

Supply voltage ($\pm \mathrm{Vs}$)	$\pm 18 \mathrm{~V}$
Phase control DC input voltage	$\pm \mathrm{Vs}$
Phase shifter input voltage	$+5.5 \mathrm{~V},-0.5 \mathrm{~V}$
Logic control voltage	$+5.5 \mathrm{~V},-0.5 \mathrm{~V}$

$\mathbf{\nabla} 50 \%$-duty output/voltage control phase shifter
∇ Setting

Setting	Pins (15)-(16) shorted, Pin (17) open
I/O characteristics	50%-duty square wave, which a phase is shifted by voltage control, is output with reference to the edge specified at polarity switch of phase shifter input signal waveform.

VFrequency range

Frequency range	1 kHz to 2 MHz $(2$ ranges available: 1 kHz to $200 \mathrm{kHz}, 10 \mathrm{kHz}$ to 2 MHz$)$
Range switch	Pin (12) open or $+5 \mathrm{~V}: 1 \mathrm{kHz}$ to 200 kHz
	$0 \mathrm{~V}: 10 \mathrm{kHz}$ to 2 MHz

$\boldsymbol{\nabla}$ Phase shifter input characteristics

Input circuit	CMOS Schmitt trigger, pulled up at $100 \mathrm{k} \Omega$
Trip point	+3.5V/+1.5V (typ)
Input voltage	CMOS (0/+5V) level
Unipolar (1f) mode	A rising or falling edge is regarded as a reference.
Polarity switch	Pin (13) open or +5 V : Rising edge regarded as a reference 0 V : Falling edge regarded as a reference
Pulse duration	Min. 50ns
Bipolar(2f) mode	Both rising and falling edge are regarded as a reference.
Mode setting	Connected with the phase shifter input (Pin (14)) and polarity switch input (Pin (13)).
Input waveform	Duty : 50\%
Input frequency range	1 kHz to 1 MHz

VVoltage control characteristics

Control method	Phase shift is specified in the proportion to phase control DC input voltage.
Input resistance	$100 \mathrm{k} \Omega \pm 3 \% \quad$ (DC) $)$
Linear maximum input voltage	$\pm 5 \mathrm{~V}(\leq 1 \mathrm{MHz})$
Linear control range	$\pm 90^{\circ}$
Voltage control sensitivity	$-20^{\circ} / \mathrm{V}\left(-100^{\circ} /+5 \mathrm{~V}, 100^{\circ} /-5 \mathrm{~V}\right)$
Sensitivity accuracy	$\pm 1^{\circ} \mathrm{V}$

∇ Phase shifter output characteristics

Output circuit		HCMOS output, series resistor at 100Ω
Output voltage		CMOS (0/+5V) level
Duty		$\begin{aligned} & 50 \% \pm 0.03 \% \text { (typ) } \quad \text { (at 200kHz) } \\ & 50 \% \pm 0.3 \% \text { (typ) } \quad \text { (at } 2 \mathrm{MHz} \text {) } \end{aligned}$
0/180 ${ }^{\circ}$ switch		Pin (20) open or $+5 \mathrm{~V}:-180^{\circ}$, $0 \mathrm{~V}: 0^{\circ}$
-180 ${ }^{\circ}$ accuracy		$\begin{array}{ll} -180^{\circ} \pm 0.02^{\circ} \text { (typ) } & \text { (at } 200 \mathrm{kHz}) \\ -180^{\circ} \pm 0.2^{\circ} \text { (typ) } & \text { (at } 2 \mathrm{MHz} \text {) } \\ \hline \end{array}$
Phase offset		$(1 \mathrm{kHz}$ to 200 kHz$)$ -0.6° (typ) (at 1 kHz) -4.5° (typ) (at 200 kHz) $(10 \mathrm{kHz}$ to 2 MHz$)$ -0.9° (typ) (at 10 kHz$)$ -42.0° (typ) (at 2 MHz)
Phase offset adjustment		Adjustment available with a $20 \mathrm{k} \Omega$-external potentiometer. (Pin (2)
Adjustment range		$\pm 5^{\circ}$ (typ)
-Reference voltage		
Output voltage/accuracy		Max. $\pm 5 \mathrm{~V} \pm 2 \%$
Temperature stability		50ppm/ ${ }^{\circ} \mathrm{C}$ (typ)
Maximum output current		$\pm 1 \mathrm{~mA}$
VOthers		
Recommended supply voltage		$\pm 15 \mathrm{~V} \pm 1 \mathrm{~V}$
Quiescent current		$\begin{aligned} & +25 m A(\max),+18 m A \text { (typ) } \\ & -20 m A(\max),-12 m A(\text { typ }) \end{aligned}$
Temperature/ humidity range	Operation	$-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 10$ to $90 \% \mathrm{RH}$
	Storage	$-30^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}, 10$ to $80 \% \mathrm{RH}$
Dimensions		$67 \times 10.5 \times 20 \mathrm{~mm}$ (protrusion not included) Type SS20 (20-pin shielded SIP)
Weight (NET)		Approx. 20 g

Note: The following specifications are applied unless otherwise specified:
$23 \pm 5^{\circ} \mathrm{C}$, Supply voltage: $\pm 15 \mathrm{~V}$

Basic connection diagram

Block diagram

SHIFTER IN This is used to switch the reference polarity of shifter POL input. The operation at double frequency, as compared with the reference signal, is actualized through the connection between the SHIFTER IN POL terminal and SHIFTER IN terminal if 50% of duty is assigned to the reference signal.
HI : Rising edge regarded as a reference
(specified when the pin is open)
LO: Falling edge regarded as a reference
Connected with SHIFTER IN terminal:
Both rising and falling edge regarded as a reference

PHASE
OFFSET

200k/2M

NOR//INV
This is used to cancel phase offset. Zero adjustment of the phase offset for CD-951V4 phase shifter only is enabled in the range of 1 kHz to 200 kHz . Both terminals of a trimmer potentiometer of $20 \mathrm{k} \Omega$ min. are connected with $\pm 5 \mathrm{~V}$ input (Pins (6) and (7)), and the center terminal is connected to the PHASE OFFSET terminal.

This is used to switch the operating frequency range between $1 \mathrm{kHz}-200 \mathrm{kHz}$ and $10 \mathrm{kHz}-2 \mathrm{MHz}$ in response to the used frequency.
$\mathrm{HI}: 1 \mathrm{kHz}$ to 200 kHz (The pin is open)
LO: 10kHz to 200MHz
This is used to switch the output phase between 0° and 180°. A 360°-phase shifter is configured in combination with a continuously variable phase shifter $\left(\pm 90^{\circ}\right)$.
$\mathrm{HI}: 0^{\circ}$ (The pin is open)
LO: 180°

DUTY50 IN

POL

This is used to switch the input polarity of the 50\%duty circuit. "HI" (open) should remain on for normal connection.
HI: Rising edge regarded as a reference
(The pin is open)
LO: Falling edge regarded as a reference

Timing chart

This timing chart presents the operation of the voltage controlled phase shifter CD-951V4.
E.g.: The CD-951V4 phase shifter is set to regard a rising edge of the input signal as a phase reference. This detector produces the signal "LO" (Pin (15) for the time proportionate to the control voltage (td) if a rise is observed in the input signal (Pin (14)).
Waveform shaping (Pin (18) is performed to assure 50% in duty (t1 $=\mathrm{t} 2)$ with reference the rising edge in the obtained signal. td adjustment allows continuous change in input/output rise time (tsft), which denotes phase change.
The same operating principles* are applied to the phase detector CD-552R3 that has realized 90°-phase shift with high accuracy.

* Patent pending

Usage example 2 -phase detector

This example indicates the adoption of this detector to the 2-phase detector. The cos and sin detection outputs are obtained, which allows amplitude and phase of the synchronization signals to be derived from the relevant vector operation.
The settings of GAIN ($\times 1$ to $\times 10$) and LPFfc (max. 1 kHz) are available in this detector. Offset adjustment is required as necessary.
Phase adjustment is available by 90°-continuous phase shift (CD951 V 4 R 1) or $0 / 180^{\circ}$-switch (S33), which enables 360°-phase change in total.
GAIN setting: Short: $\times 10$
Open: $\times 1$
LPFfc setting (same as R21): Short: 1kHz

Note: See the CD-552R3/R4 in Page 72 for details in the GAIN setting and LPF setting.

Characteristics

Control voltage coefficient - Temperature

